C–H activation

Transition metal-catalysed C–H activation has emerged as an increasingly powerful platform for molecular syntheses, enabling applications to natural product syntheses, late-stage modification, pharmaceutical industries and material sciences, among others. This Primer summarizes representative best practices for the experimental set-up and data deposition for C–H activation, as well as discussing key developments including recent advances in asymmetric, photoinduced and electrocatalytic C–H activation. Likewise, strategies for applications of C–H activation towards the assembly of structurally complex (bio)polymers and drugs in academia and industry are discussed. In addition, current limitations in C–H activation and possible approaches for overcoming these shortcomings are reviewed.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 1 digital issues and online access to articles

133,45 € per year

only 133,45 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Transient directing ligands for selective metal-catalysed C–H activation

Article 20 July 2021

Temporary or removable directing groups enable activation of unstrained C–C bonds

Article 21 September 2020

Transition metal-catalysed directed C–H functionalization with nucleophiles

Article 27 October 2022

References

  1. Johansson Seechurn, C. C. C., Kitching, M. O., Colacot, T. J. & Snieckus, V. Palladium-catalyzed cross-coupling: a historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed.51, 5062–5085 (2012). Google Scholar
  2. Nicolaou, K. C., Bulger, P. G. & Sarlah, D. Palladium-catalyzed cross-coupling reactions in total synthesis. Angew. Chem. Int. Ed.44, 4442–4489 (2005). Google Scholar
  3. Khake, S. M. & Chatani, N. Chelation-assisted nickel-catalyzed C–H functionalizations. Trends Chem.1, 524–539 (2019). Google Scholar
  4. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev.119, 2192–2452 (2019). Google Scholar
  5. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev.47, 6603–6743 (2018). Google Scholar
  6. Wang, C. S., Dixneuf, P. H. & Soule, J. F. Photoredox catalysis for building C–C bonds from C(sp 2 )–H bonds. Chem. Rev.118, 7532–7585 (2018). Google Scholar
  7. Chu, J. C. K. & Rovis, T. Complementary strategies for directed C(sp 3 )–H functionalization: a comparison of transition-metal-catalyzed activation, hydrogen atom transfer, and carbene/nitrene transfer. Angew. Chem. Int. Ed.57, 62–101 (2018). Google Scholar
  8. Murakami, K., Yamada, S., Kaneda, T. & Itami, K. C–H functionalization of azines. Chem. Rev.117, 9302–9332 (2017). Google Scholar
  9. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev.117, 9247–9301 (2017). Google Scholar
  10. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev.117, 8754–8786 (2017). Google Scholar
  11. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci.2, 281–292 (2016). Google Scholar
  12. Labinger, J. A. & Bercaw, J. E. Understanding and exploiting C–H bond activation. Nature417, 507–514 (2002). ADSGoogle Scholar
  13. Egorova, K. S. & Ananikov, V. P. Toxicity of metal compounds: knowledge and myths. Organometallics36, 4071–4090 (2017). Google Scholar
  14. Allian, A. D. et al. Process safety in the pharmaceutical industry—part I: thermal and reaction hazard evaluation processes and techniques. Org. Process. Res. Dev.24, 2529–2548 (2020). Google Scholar
  15. Baumann, M., Moody, T. S., Smyth, M. & Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process. Res. Dev.24, 1802–1813 (2020). Google Scholar
  16. Meyer, T. H., Finger, L. H., Gandeepan, P. & Ackermann, L. Resource economy by metallaelectrocatalysis: merging electrochemistry and C–H activation. Trends Chem.1, 63–76 (2019). Google Scholar
  17. Chatt, J. & Davidson, J. M. 154. The tautomerism of arene and ditertiary phosphine complexes of ruthenium(0), and the preparation of new types of hydrido-complexes of ruthenium(II). J. Chem. Soc.https://doi.org/10.1039/JR9650000843 (1965). ArticleGoogle Scholar
  18. Cope, A. C. & Siekman, R. W. Formation of covalent bonds from platinum or palladium to carbon by direct substitution. J. Am. Chem. Soc.87, 3272–3273 (1965). Google Scholar
  19. Janowicz, A. H. & Bergman, R. G. Carbon–hydrogen activation in completely saturated hydrocarbons: direct observation of M + R–H → M(R)(H). J. Am. Chem. Soc.104, 352–354 (1982). This investigation represents a pioneering study on the activation of unactivated C–H bonds via oxidative addition to a coordinatively unsaturated, in situ-generated iridium(I) complex. Google Scholar
  20. Kleiman, J. P. & Dubeck, M. The preparation of cyclopentadienyl [o-(phenylazo)phenyl]nickel. J. Am. Chem. Soc.85, 1544–1545 (1963). Google Scholar
  21. Omae, I. Intramolecular five-membered ring compounds and their applications. Coord. Chem. Rev.248, 995–1023 (2004). Google Scholar
  22. Duff, J. M. & Shaw, B. L. Complexes of iridium(III) and rhodium(III) with metallated and unmetallated dimethyl(1-naphthyl)- and methylphenyl(1-naphthyl)-phosphine. J. Chem. Soc. Dalton Trans.https://doi.org/10.1039/DT9720002219 (1972). ArticleGoogle Scholar
  23. De Sarkar, S., Liu, W., Kozhushkov, S. I. & Ackermann, L. Weakly coordinating directing groups for ruthenium(II)-catalyzed C–H activation. Adv. Synth. Catal.356, 1461–1479 (2014). Google Scholar
  24. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res.45, 788–802 (2012). Google Scholar
  25. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev.111, 1315–1345 (2011). Google Scholar
  26. Balcells, D., Clot, E. & Eisenstein, O. C–H bond activation in transition metal species from a computational perspective. Chem. Rev.110, 749–823 (2010). This review analyses various mechanistic manifolds of transition metal-catalysed C–H activation in detail and classifies these based on computational investigations. Google Scholar
  27. Ackermann, L., Vicente, R. & Althammer, A. Assisted ruthenium-catalyzed C–H bond activation: carboxylic acids as cocatalysts for generally applicable direct arylations in apolar solvents. Org. Lett.10, 2299–2302 (2008). This study introduces carboxylate assistance for ruthenium-catalysed C–H activation, which allows for versatile transformations operative in apolar solvents. Google Scholar
  28. Lapointe, D. & Fagnou, K. Overview of the mechanistic work on the concerted metallation–deprotonation pathway. Chem. Lett.39, 1118–1126 (2010). Google Scholar
  29. Biswas, B., Sugimoto, M. & Sakaki, S. C–H bond activation of benzene and methane by M(η 2 -O2CH)2 (M = Pd or Pt). A theoretical study. Organometallics19, 3895–3908 (2000). Google Scholar
  30. Davies, D. L., Macgregor, S. A. & McMullin, C. L. Computational studies of carboxylate-assisted C–H activation and functionalization at Group 8–10 transition metal centers. Chem. Rev.117, 8649–8709 (2017). Google Scholar
  31. Rogge, T., Oliveira, J. C. A., Kuniyil, R., Hu, L. & Ackermann, L. Reactivity-controlling factors in carboxylate-assisted C–H activation under 4d and 3d transition metal catalysis. ACS Catal.10, 10551–10558 (2020). Google Scholar
  32. Murahashi, S. Synthesis of phthalimidines from Schiff bases and carbon monoxide. J. Am. Chem. Soc.77, 6403–6404 (1955). This pioneering investigation arguably represents the first example of catalytic C–H activation, thereby laying the foundation for numerous further advances and achievements in this research area. Google Scholar
  33. Fujiwara, Y., Moritani, I., Danno, S., Asano, R. & Teranishi, S. Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate. J. Am. Chem. Soc.91, 7166–7169 (1969). This publication accomplishes the olefination of arenes with unactivated olefines via palladium-catalysed C–H activation for the first time. Google Scholar
  34. Lewis, L. N. & Smith, J. F. Catalytic carbon–carbon bond formation via ortho-metalated complexes. J. Am. Chem. Soc.108, 2728–2735 (1986). This study employsortho-metallated ruthenium complexes for the catalytic formation of C–C bonds, thus inspiring further developments in C–H activation by the action of ruthenium catalysts. Google Scholar
  35. Nakamura, N., Tajima, Y. & Sakai, K. Direct phenylation of isoxazoles using palladium catalysts. Synthesis of 4-phenylmuscimol. Heterocycles17, 235–245 (1982). Google Scholar
  36. Murai, S. et al. Efficient catalytic addition of aromatic carbon–hydrogen bonds to olefins. Nature366, 529–531 (1993). This study constitutes one of the most notable contributions to catalysed C–H activation featuring a broad applicability. ADSGoogle Scholar
  37. Matsubara, T., Koga, N., Musaev, D. G. & Morokuma, K. Density functional study on activation of ortho-CH bond in aromatic ketone by Ru complex. Role of unusual five-coordinated d 6 metallacycle intermediate with agostic interaction. J. Am. Chem. Soc.120, 12692–12693 (1998). Google Scholar
  38. Daugulis, O., Roane, J. & Tran, L. D. Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc. Chem. Res.48, 1053–1064 (2015). Google Scholar
  39. Hummel, J. R., Boerth, J. A. & Ellman, J. A. Transition-metal-catalyzed C–H bond addition to carbonyls, imines, and related polarized π bonds. Chem. Rev.117, 9163–9227 (2017). Google Scholar
  40. Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C–H alkylation using alkenes. Chem. Rev.117, 9333–9403 (2017). Google Scholar
  41. Rej, S., Ano, Y. & Chatani, N. Bidentate directing groups: an efficient tool in C–H bond functionalization chemistry for the expedient construction of C–C bonds. Chem. Rev.120, 1788–1887 (2020). Google Scholar
  42. Satoh, T. & Miura, M. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. Chem. Eur. J.16, 11212–11222 (2010). Google Scholar
  43. Baudoin, O. Ring construction by palladium(0)-catalyzed C(sp 3 )–H activation. Acc. Chem. Res.50, 1114–1123 (2017). Google Scholar
  44. He, C., Whitehurst, W. G. & Gaunt, M. J. Palladium-catalyzed C(sp 3 )–H bond functionalization of aliphatic amines. Chem5, 1031–1058 (2019). Google Scholar
  45. Chen, Z. et al. Catalytic alkylation of unactivated C(sp 3 )–H bonds for C(sp 3 )–C(sp 3 ) bond formation. Chem. Soc. Rev.48, 4921–4942 (2019). Google Scholar
  46. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C–H bonds by a dimanganese catalyst. Science312, 1941–1943 (2006). This publication constitutes a milestone in C–H activation chemistry, owing to the elegant design of a hydrogen-bonding linker, which non-covalently binds to the substrates and enables remote C–H activation. ADSGoogle Scholar
  47. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature486, 518–522 (2012). ADSGoogle Scholar
  48. Yang, Y.-F. et al. Palladium-catalyzed meta-selective C–H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity. J. Am. Chem. Soc.136, 344–355 (2014). Google Scholar
  49. Dey, A., Sinha, S. K., Achar, T. K. & Maiti, D. Accessing remote meta- and para-C(sp 2 )–H bonds with covalently attached directing groups. Angew. Chem. Int. Ed.58, 10820–10843 (2018). Google Scholar
  50. Bag, S. et al. Remote para-C–H functionalization of arenes by a D-shaped biphenyl template-based assembly. J. Am. Chem. Soc.137, 11888–11891 (2015). This publication arguably presents a directedpara-selective C–H activation, employing a carefully designed D-shaped template. Google Scholar
  51. Zhang, Z., Tanaka, K. & Yu, J.-Q. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature543, 538–542 (2017). ADSGoogle Scholar
  52. Mihai, M. T., Genov, G. R. & Phipps, R. J. Access to the meta position of arenes through transition metal catalysed C–H bond functionalisation: a focus on metals other than palladium. Chem. Soc. Rev.47, 149–171 (2018). Google Scholar
  53. Leitch, J. A. & Frost, C. G. Ruthenium-catalysed σ-activation for remote meta-selective C–H functionalisation. Chem. Soc. Rev.46, 7145–7153 (2017). Google Scholar
  54. Korvorapun, K., Kuniyil, R. & Ackermann, L. Late-stage diversification by selectivity switch in meta-C–H activation: evidence for singlet stabilization. ACS Catal.10, 435–440 (2020). Google Scholar
  55. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc.135, 5877–5884 (2013). Google Scholar
  56. Li, J. et al. N-Acyl amino acid ligands for ruthenium(II)-catalyzed meta-C–H tert-alkylation with removable auxiliaries. J. Am. Chem. Soc.137, 13894–13901 (2015). Google Scholar
  57. Catellani, M., Motti, E. & Della Ca’, N. Catalytic sequential reactions involving palladacycle-directed aryl coupling steps. Acc. Chem. Res.41, 1512–1522 (2008). Google Scholar
  58. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. Engl.36, 119–122 (1997). Google Scholar
  59. Okumura, S. et al. para-Selective alkylation of benzamides and aromatic ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc.138, 14699–14704 (2016). Google Scholar
  60. St John-Campbell, S. & Bull, J. A. Transient imines as ‘next generation’ directing groups for the catalytic functionalisation of C–H bonds in a single operation. Org. Biomol. Chem.16, 4582–4595 (2018). Google Scholar
  61. Gandeepan, P. & Ackermann, L. Transient directing groups for transformative C–H activation by synergistic metal catalysis. Chem4, 199–222 (2018). Google Scholar
  62. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp 3 )–H bonds using a transient directing group. Science351, 252–256 (2016). ADSGoogle Scholar
  63. Yao, Q.-J., Zhang, S., Zhan, B.-B. & Shi, B.-F. Atroposelective synthesis of axially chiral biaryls by palladium-catalyzed asymmetric C–H olefination enabled by a transient chiral auxiliary. Angew. Chem. Int. Ed.56, 6617–6621 (2017). Google Scholar
  64. Liao, G. et al. Scalable, stereocontrolled formal syntheses of (+)-isoschizandrin and (+)-steganone: development and applications of palladium(II)-catalyzed atroposelective C–H alkynylation. Angew. Chem. Int. Ed.57, 3661–3665 (2018). Google Scholar
  65. Brown, D. G. & Bostrom, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem.59, 4443–4458 (2016). Google Scholar
  66. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today20, 11–17 (2015). Google Scholar
  67. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science363, eaat0805 (2019). Google Scholar
  68. Tsang, W. C., Zheng, N. & Buchwald, S. L. Combined C–H functionalization/C–N bond formation route to carbazoles. J. Am. Chem. Soc.127, 14560–14561 (2005). This article represents the first example of a palladium-catalysed direct C–H amination via C–N bond-forming reductive elimination from a carbometallation intermediate. Google Scholar
  69. Thu, H. Y., Yu, W. Y. & Che, C. M. Intermolecular amidation of unactivated sp 2 and sp 3 C–H bonds via palladium-catalyzed cascade C–H activation/nitrene insertion. J. Am. Chem. Soc.128, 9048–9049 (2006). This study reports the first example of an intermolecular C–H amination by oxidative palladium catalysis to showcase the utility of a carbometallation intermediate as an electrophilic amine source. Google Scholar
  70. Wang, Z., Ni, J., Kuninobu, Y. & Kanai, M. Copper-catalyzed intramolecular C(sp 3 )–H and C(sp 2 )–H amidation by oxidative cyclization. Angew. Chem. Int. Ed.53, 3496–3499 (2014). Google Scholar
  71. Chen, X., Hao, X. S., Goodhue, C. E. & Yu, J. Q. Cu(II)-catalyzed functionalizations of aryl C–H bonds using O2 as an oxidant. J. Am. Chem. Soc.128, 6790–6791 (2006). Google Scholar
  72. Zhang, L. B. et al. Cobalt(II)-catalyzed C–H amination of arenes with simple alkylamines. Org. Lett.18, 1318–1321 (2016). Google Scholar
  73. Zhao, H., Shang, Y. & Su, W. Rhodium(III)-catalyzed intermolecular N-chelator-directed aromatic C–H amidation with amides. Org. Lett.15, 5106–5109 (2013). Google Scholar
  74. Suzuki, C., Hirano, K., Satoh, T. & Miura, M. Direct synthesis of N–H carbazoles via iridium(III)-catalyzed intramolecular C–H amination. Org. Lett.17, 1597–1600 (2015). Google Scholar
  75. Yan, Q. et al. Nickel-catalyzed direct amination of arenes with alkylamines. Org. Lett.17, 2482–2485 (2015). Google Scholar
  76. Wu, X., Zhao, Y. & Ge, H. Nickel-catalyzed site-selective amidation of unactivated C(sp 3 )–H bonds. Chem. Eur. J.20, 9530–9533 (2014). Google Scholar
  77. Yang, M. et al. Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. Nat. Commun.5, 4707 (2014). ADSGoogle Scholar
  78. Hartwig, J. F. Electronic effects on reductive elimination to form carbon–carbon and carbon–heteroatom bonds from palladium(II) complexes. Inorg. Chem.46, 1936–1947 (2007). Google Scholar
  79. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp 3 )–H bonds. Angew. Chem. Int. Ed.58, 6385–6390 (2019). Google Scholar
  80. Yang, Q. L. et al. Copper-catalyzed electrochemical C–H amination of arenes with secondary amines. J. Am. Chem. Soc.140, 11487–11494 (2018). Google Scholar
  81. Sauermann, N., Mei, R. & Ackermann, L. Electrochemical C–H amination by cobalt catalysis in a renewable solvent. Angew. Chem. Int. Ed.57, 5090–5094 (2018). Google Scholar
  82. Qiu, Y., Stangier, M., Meyer, T. H., Oliveira, J. C. A. & Ackermann, L. Iridium-catalyzed electrooxidative C–H activation by chemoselective redox-catalyst cooperation. Angew. Chem. Int. Ed.57, 14179–14183 (2018). Google Scholar
  83. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(II)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J. Am. Chem. Soc.140, 4195–4199 (2018). Google Scholar
  84. Choi, S., Chatterjee, T., Choi, W. J., You, Y. & Cho, E. J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal.5, 4796–4802 (2015). Google Scholar
  85. Tan, Y. & Hartwig, J. F. Palladium-catalyzed amination of aromatic C–H bonds with oxime esters. J. Am. Chem. Soc.132, 3676–3677 (2010). Google Scholar
  86. Kawano, T., Hirano, K., Satoh, T. & Miura, M. A new entry of amination reagents for heteroaromatic C–H bonds: copper-catalyzed direct amination of azoles with chloroamines at room temperature. J. Am. Chem. Soc.132, 6900–6901 (2010). Google Scholar
  87. Grohmann, C., Wang, H. & Glorius, F. Rh[III]-catalyzed direct C–H amination using N-chloroamines at room temperature. Org. Lett.14, 656–659 (2012). Google Scholar
  88. Ng, K. H., Zhou, Z. & Yu, W. Y. Rhodium(III)-catalyzed intermolecular direct amination of aromatic C–H bonds with N-chloroamines. Org. Lett.14, 272–275 (2012). Google Scholar
  89. Kim, J. Y. et al. Rhodium-catalyzed intermolecular amidation of arenes with sulfonyl azides via chelation-assisted C–H bond activation. J. Am. Chem. Soc.134, 9110–9113 (2012). Google Scholar
  90. Peng, J., Xie, Z., Chen, M., Wang, J. & Zhu, Q. Copper-catalyzed C(sp 2 )–H amidation with azides as amino sources. Org. Lett.16, 4702–4705 (2014). Google Scholar
  91. Sun, B., Yoshino, T., Matsunaga, S. & Kanai, M. Air-stable carbonyl(pentamethylcyclopentadienyl)cobalt diiodide complex as a precursor for cationic (pentamethylcyclopentadienyl)cobalt(III) catalysis: application for directed C-2 selective C–H amidation of indoles. Adv. Synth. Catal.356, 1491–1495 (2014). Google Scholar
  92. Bhanuchandra, M., Yadav, M. R., Rit, R. K., Rao Kuram, M. & Sahoo, A. K. Ru(II)-catalyzed intermolecular ortho-C–H amidation of aromatic ketones with sulfonyl azides. Chem. Commun.49, 5225–5227 (2013). Google Scholar
  93. Liu, B., Li, B. & Wang, B. Ru(II)-catalyzed amidation reactions of 8-methylquinolines with azides via C(sp 3 )–H activation. Chem. Commun.51, 16334–16337 (2015). Google Scholar
  94. Wang, H., Tang, G. & Li, X. Rhodium(III)-catalyzed amidation of unactivated C(sp 3 )–H bonds. Angew. Chem. Int. Ed.54, 13049–13052 (2015). Google Scholar
  95. Kang, T., Kim, Y., Lee, D., Wang, Z. & Chang, S. Iridium-catalyzed intermolecular amidation of sp 3 C–H bonds: late-stage functionalization of an unactivated methyl group. J. Am. Chem. Soc.136, 4141–4144 (2014). Google Scholar
  96. Ryu, J., Kwak, J., Shin, K., Lee, D. & Chang, S. Ir(III)-catalyzed mild C–H amidation of arenes and alkenes: an efficient usage of acyl azides as the nitrogen source. J. Am. Chem. Soc.135, 12861–12868 (2013). Google Scholar
  97. Sun, K., Li, Y., Xiong, T., Zhang, J. & Zhang, Q. Palladium-catalyzed C–H aminations of anilides with N-fluorobenzenesulfonimide. J. Am. Chem. Soc.133, 1694–1697 (2011). Google Scholar
  98. Zhou, B., Du, J., Yang, Y., Feng, H. & Li, Y. Rhodium-catalyzed direct addition of aryl C–H bonds to nitrosobenzenes at room temperature. Org. Lett.15, 6302–6305 (2013). Google Scholar
  99. Breslow, R. & Gellman, S. H. Tosylamidation of cyclohexane by a cytochrome-P-450 Model. J. Chem. Soc. Chem. Commun.https://doi.org/10.1039/C39820001400 (1982). ArticleGoogle Scholar
  100. Breslow, R. & Gellman, S. H. Intramolecular nitrene carbon–hydrogen insertions mediated by transition-metal complexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc.105, 6728–6729 (1983). Google Scholar
  101. Varela-Álvarez, A. et al. Rh2(II,III) catalysts with chelating carboxylate and carboxamidate supports: electronic structure and nitrene transfer reactivity. J. Am. Chem. Soc.138, 2327–2341 (2016). Google Scholar
  102. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res.45, 911–922 (2012). Google Scholar
  103. Caballero, A. et al. Highly regioselective functionalization of aliphatic carbon–hydrogen bonds with a perbromohomoscorpionate copper(I) catalyst. J. Am. Chem. Soc.125, 1446–1447 (2003). Google Scholar
  104. Albone, D. P., Aujla, P. S., Challenger, S. & Derrick, A. M. A simple copper catalyst for both aziridination of alkenes and amination of activated hydrocarbons with chloramine-T trihydrate. J. Org. Chem.63, 9569–9571 (1998). Google Scholar
  105. Harvey, M. E., Musaev, D. G. & Du Bois, J. A diruthenium catalyst for selective, intramolecular allylic C–H amination: reaction development and mechanistic insight gained through experiment and theory. J. Am. Chem. Soc.133, 17207–17216 (2011). Google Scholar
  106. Ragaini, F. et al. Amination of benzylic C–H bonds by arylazides catalyzed by Co II -porphyrin complexes: a synthetic and mechanistic study. Chem. Eur. J.9, 249–259 (2003). Google Scholar
  107. Paradine, S. M. et al. A manganese catalyst for highly reactive yet chemoselective intramolecular C(sp 3 )–H amination. Nat. Chem.7, 987–994 (2015). Google Scholar
  108. Yu, X. Q., Huang, J. S., Zhou, X. G. & Che, C. M. Amidation of saturated C–H bonds catalyzed by electron-deficient ruthenium and manganese porphyrins. A highly catalytic nitrogen atom transfer process. Org. Lett.2, 2233–2236 (2000). Google Scholar
  109. Aguila, M. J., Badiei, Y. M. & Warren, T. H. Mechanistic insights into C–H amination via dicopper nitrenes. J. Am. Chem. Soc.135, 9399–9406 (2013). Google Scholar
  110. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science359, 1016–1021 (2018). ADSGoogle Scholar
  111. Hwang, Y., Jung, H., Lee, E., Kim, D. & Chang, S. Quantitative analysis on two-point ligand modulation of iridium catalysts for chemodivergent C–H amidation. J. Am. Chem. Soc.142, 8880–8889 (2020). Google Scholar
  112. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal.2, 219–227 (2019). This investigation achieves the challenging construction of valuable γ-lactams in an asymmetric fashion under iridium catalysis, employing a novel chiral hydrogen-bonding ligand. Google Scholar
  113. Lee, J. et al. Versatile Cp*Co(III)(LX) catalyst system for selective intramolecular C–H amidation reactions. J. Am. Chem. Soc.142, 12324–12332 (2020). Google Scholar
  114. Jung, H. et al. Harnessing secondary coordination sphere interactions that enable the selective amidation of benzylic C–H bonds. J. Am. Chem. Soc.141, 15356–15366 (2019). Google Scholar
  115. Liang, Y.-F. & Jiao, N. Oxygenation via C–H/C–C bond activation with molecular oxygen. Acc. Chem. Res.50, 1640–1653 (2017). Google Scholar
  116. Thirunavukkarasu, V. S., Kozhushkov, S. I. & Ackermann, L. C–H nitrogenation and oxygenation by ruthenium catalysis. Chem. Commun.50, 29–39 (2014). Google Scholar
  117. Caballero, A. & Pérez, P. J. Methane as raw material in synthetic chemistry: the final frontier. Chem. Soc. Rev.42, 8809–8820 (2013). Google Scholar
  118. Gol’dshleger, N. F., Khidekel, M. L., Shilov, A. E. & Shteinman, A. A. Oxidative dehydrogenation of saturated hydrocarbons in palladium(II) complex solutions. Kinet. Katal.15, 261 (1974). Google Scholar
  119. Jintoku, T., Nishimura, K., Takaki, K. & Fujiwara, Y. Palladium catalyzed transformation of benzene to phenol with molecular oxygen. Chem. Lett.19, 1687–1688 (1990). Google Scholar
  120. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc.126, 2300–2301 (2004). This contribution demonstrates the selective formation of C–O bonds via palladium-catalysed C(sp2)–H and challenging C(sp3)–H activation. Google Scholar
  121. Giri, R. et al. Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C–H bond oxidation. Angew. Chem. Int. Ed.44, 7420–7424 (2005). Google Scholar
  122. Thirunavukkarasu, V. S., Hubrich, J. & Ackermann, L. Ruthenium-catalyzed oxidative C(sp 2 )–H bond hydroxylation: site-selective C–O bond formation on benzamides. Org. Lett.14, 4210–4213 (2012). Google Scholar
  123. Shan, G., Han, X., Lin, Y., Yu, S. & Rao, Y. Broadening the catalyst and reaction scope of regio- and chemoselective C–H oxygenation: a convenient and scalable approach to 2-acylphenols by intriguing Rh(II) and Ru(II) catalysis. Org. Biomol. Chem.11, 2318–2322 (2013). Google Scholar
  124. Wang, Z., Kuninobu, Y. & Kanai, M. Copper-mediated direct C(sp 3 )–H and C(sp 2 )–H acetoxylation. Org. Lett.16, 4790–4793 (2014). Google Scholar
  125. Bhadra, S., Dzik, W. I. & Gooßen, L. J. Synthesis of aryl ethers from benzoates through carboxylate-directed C–H-activating alkoxylation with concomitant protodecarboxylation. Angew. Chem. Int. Ed.52, 2959–2962 (2013). Google Scholar
  126. Ueno, R., Natsui, S. & Chatani, N. Cobalt(II)-catalyzed acyloxylation of C–H bonds in aromatic amides with carboxylic acids. Org. Lett.20, 1062–1065 (2018). Google Scholar
  127. Yang, F., Zhang, H., Liu, X., Wang, B. & Ackermann, L. Transition metal-catalyzed regio-selective aromatic C–H bond oxidation for C–O bond formation. Chin. J. Org. Chem.39, 59 (2019). Google Scholar
  128. Kim, J., Shin, K., Jin, S., Kim, D. & Chang, S. Oxidatively induced reductive elimination: exploring the scope and catalyst systems with Ir, Rh, and Ru complexes. J. Am. Chem. Soc.141, 4137–4146 (2019). Google Scholar
  129. Li, L., Brennessel, W. W. & Jones, W. D. An efficient low-temperature route to polycyclic isoquinoline salt synthesis via C–H activation with [Cp*MCl2]2 (M = Rh, Ir). J. Am. Chem. Soc.130, 12414–12419 (2008). Google Scholar
  130. Wendlandt, A. E., Suess, A. M. & Stahl, S. S. Copper-catalyzed aerobic oxidative C–H functionalizations: trends and mechanistic insights. Angew. Chem. Int. Ed.50, 11062–11087 (2011). Google Scholar
  131. Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O2 or air. J. Am. Chem. Soc.131, 14654–14655 (2009). Google Scholar
  132. Yan, Y. et al. PdCl2 and N-hydroxyphthalimide co-catalyzed C–H hydroxylation by dioxygen activation. Angew. Chem. Int. Ed.52, 5827–5831 (2013). ADSGoogle Scholar
  133. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev.110, 1147–1169 (2010). Google Scholar
  134. Canty, A. J., Denney, M. C., van Koten, G., Skelton, B. W. & White, A. H. Carbon–oxygen bond formation at metal(IV) centers: reactivity of palladium(II) and platinum(II) complexes of the [2,6-(dimethylaminomethyl)phenyl-N,C,N]-(pincer) ligand toward iodomethane and dibenzoyl peroxide; structural studies of M(II) and M(IV) complexes. Organometallics23, 5432–5439 (2004). Google Scholar
  135. Massignan, L. et al. C–H oxygenation reactions enabled by dual catalysis with electrogenerated hypervalent iodine species and ruthenium complexes. Angew. Chem. Int. Ed.59, 3184–3189 (2020). Google Scholar
  136. Sauer, G. S. & Lin, S. An electrocatalytic approach to the radical difunctionalization of alkenes. ACS Catal.8, 5175–5187 (2018). Google Scholar
  137. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed.57, 5594–5619 (2018). Google Scholar
  138. Kalsi, D., Dutta, S., Barsu, N., Rueping, M. & Sundararaju, B. Room-temperature C–H bond functionalization by merging cobalt and photoredox catalysis. ACS Catal.8, 8115–8120 (2018). Google Scholar
  139. Zhang, S.-K., Struwe, J., Hu, L. & Ackermann, L. Nickela-electrocatalyzed C–H alkoxylation with secondary alcohols: oxidation-induced reductive elimination at nickel(III). Angew. Chem. Int. Ed.59, 3178–3183 (2020). Google Scholar
  140. Sauermann, N., Meyer, T. H., Tian, C. & Ackermann, L. Electrochemical cobalt-catalyzed C–H oxygenation at room temperature. J. Am. Chem. Soc.139, 18452–18455 (2017). This contribution achieves C–H oxygenation under cobalt catalysis, employing electricity as the environmentally benign oxidant. Google Scholar
  141. Meyer, T. H., Oliveira, J. C. A., Ghorai, D. & Ackermann, L. Insights into cobalta(III/IV/II)-electrocatalysis: oxidation-induced reductive elimination for twofold C–H activation. Angew. Chem. Int. Ed.59, 10955–10960 (2020). Google Scholar
  142. Waltz, K. M., He, X., Muhoro, C. & Hartwig, J. F. Hydrocarbon functionalization by transition metal boryls. J. Am. Chem. Soc.117, 11357–11358 (1995). Google Scholar
  143. Waltz, K. M. & Hartwig, J. F. Selective functionalization of alkanes by transition-metal boryl complexes. Science277, 211–213 (1997). Google Scholar
  144. Iverson, C. N. & Smith, M. R. Stoichiometric and catalytic B–C bond formation from unactivated hydrocarbons and boranes. J. Am. Chem. Soc.121, 7696–7697 (1999). Google Scholar
  145. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. high turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc.124, 390–391 (2002). Google Scholar
  146. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. & Smith, M. R. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science295, 305–308 (2002). ADSGoogle Scholar
  147. Preshlock, S. M. et al. High-throughput optimization of Ir-catalyzed C–H borylation: a tutorial for practical applications. J. Am. Chem. Soc.135, 7572–7582 (2013). Google Scholar
  148. Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev.40, 1992–2002 (2011). Google Scholar
  149. Boller, T. M. et al. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes. J. Am. Chem. Soc.127, 14263–14278 (2005). Google Scholar
  150. Press, L. P., Kosanovich, A. J., McCulloch, B. J. & Ozerov, O. V. High-turnover aromatic C–H borylation catalyzed by POCOP-type pincer complexes of iridium. J. Am. Chem. Soc.138, 9487–9497 (2016). Google Scholar
  151. Zhu, L. et al. Ir(III)/Ir(V) or Ir(I)/Ir(III) catalytic cycle? Steric-effect-controlled mechanism for the para-C–H borylation of arenes. Organometallics36, 2107–2115 (2017). Google Scholar
  152. Zhong, R.-L. & Sakaki, S. sp 3 C–H borylation catalyzed by iridium(III) triboryl complex: comprehensive theoretical study of reactivity, regioselectivity, and prediction of excellent ligand. J. Am. Chem. Soc.141, 9854–9866 (2019). Google Scholar
  153. Shi, Y., Gao, Q. & Xu, S. Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp 3 )–H borylation of cyclopropanes. J. Am. Chem. Soc.141, 10599–10604 (2019). Google Scholar
  154. Jones, M. R., Fast, C. D. & Schley, N. D. Iridium-catalyzed sp 3 C–H borylation in hydrocarbon solvent enabled by 2,2′-dipyridylarylmethane ligands. J. Am. Chem. Soc.142, 6488–6492 (2020). Google Scholar
  155. Cook, A. K., Schimler, S. D., Matzger, A. J. & Sanford, M. S. Catalyst-controlled selectivity in the C–H borylation of methane and ethane. Science351, 1421–1424 (2016). ADSGoogle Scholar
  156. Smith, K. T. et al. Catalytic borylation of methane. Science351, 1424–1427 (2016). ADSGoogle Scholar
  157. Ahn, S. et al. Rational design of a catalyst for the selective monoborylation of methane. ACS Catal.8, 10021–10031 (2018). Google Scholar
  158. Obligacion, J. V., Semproni, S. P. & Chirik, P. J. Cobalt-catalyzed C–H borylation. J. Am. Chem. Soc.136, 4133–4136 (2014). Google Scholar
  159. Obligacion, J. V., Semproni, S. P., Pappas, I. & Chirik, P. J. Cobalt-catalyzed C(sp 2 )-H borylation: mechanistic insights inspire catalyst design. J. Am. Chem. Soc.138, 10645–10653 (2016). Google Scholar
  160. Obligacion, J. V. & Chirik, P. J. Mechanistic studies of cobalt-catalyzed C(sp 2 )–H borylation of five-membered heteroarenes with pinacolborane. ACS Catal.7, 4366–4371 (2017). Google Scholar
  161. Genov, G. R., Douthwaite, J. L., Lahdenperä, A. S. K., Gibson, D. C. & Phipps, R. J. Enantioselective remote C–H activation directed by a chiral cation. Science367, 1246–1251 (2020). ADSGoogle Scholar
  162. Kuninobu, Y., Ida, H., Nishi, M. & Kanai, M. A meta-selective C–H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem.7, 712–717 (2015). Google Scholar
  163. Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev.116, 8003–8104 (2016). Google Scholar
  164. Giri, R., Chen, X. & Yu, J.-Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Ed.44, 2112–2115 (2005). Google Scholar
  165. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon-hydrogen bonds. J. Am. Chem. Soc.128, 7134–7135 (2006). Google Scholar
  166. Alsters, P. L. et al. Rigid five- and six-membered C,N,N′-bound aryl-, benzyl-, and alkylorganopalladium complexes: sp 2 vs. sp 3 carbon-hydrogen activation during cyclopalladation and palladium(IV) intermediates in oxidative addition reactions with dihalogens and alkyl halides. Organometallics12, 1831–1844 (1993). Google Scholar
  167. Newkome, G. R., Puckett, W. E., Gupta, V. K. & Kiefer, G. E. Cyclometalation of the platinum metals with nitrogen and alkyl, alkenyl, and benzyl carbon donors. Chem. Rev.86, 451–489 (1986). Google Scholar
  168. McMurtrey, K. B., Racowski, J. M. & Sanford, M. S. Pd-catalyzed C–H fluorination with nucleophilic fluoride. Org. Lett.14, 4094–4097 (2012). Google Scholar
  169. Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature473, 470–477 (2011). ADSGoogle Scholar
  170. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev.116, 5105–5154 (2016). Google Scholar
  171. Sperger, T., Sanhueza, I. A., Kalvet, I. & Schoenebeck, F. Computational studies of synthetically relevant homogeneous organometallic catalysis involving Ni, Pd, Ir, and Rh: an overview of commonly employed DFT methods and mechanistic insights. Chem. Rev.115, 9532–9586 (2015). Google Scholar
  172. Musaev, D. G., Figg, T. M. & Kaledin, A. L. Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C–H bond functionalization. Chem. Soc. Rev.43, 5009–5031 (2014). Google Scholar
  173. Bartlett, R. J. & Musiał, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys.79, 291–352 (2007). ADSGoogle Scholar
  174. Riplinger, C., Pinski, P., Becker, U., Valeev, E. F. & Neese, F. Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys.144, 024109 (2016). ADSGoogle Scholar
  175. Bursch, M. et al. Understanding and quantifying London dispersion effects in organometallic complexes. Acc. Chem. Res.52, 258–266 (2019). Google Scholar
  176. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys.125, 194101 (2006). ADSGoogle Scholar
  177. Casanova-Páez, M., Dardis, M. B. & Goerigk, L. ωB2PLYP and ωB2GPPLYP: the first two double-hybrid density functionals with long-range correction optimized for excitation energies. J. Chem. Theory Comput.15, 4735–4744 (2019). Google Scholar
  178. Mennucci, B. & Tomasi, J. Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J. Chem. Phys.106, 5151–5158 (1997). ADSGoogle Scholar
  179. Pyykkö, P. Relativistic effects in chemistry: more common than you thought. Annu. Rev. Phys. Chem.63, 45–64 (2012). ADSGoogle Scholar
  180. Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys.100, 7535–7542 (1994). ADSGoogle Scholar
  181. Hay, P. J. & Martin, R. L. Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree–Fock and density functional methods: UF6, NpF6, and PuF6. J. Chem. Phys.109, 3875–3881 (1998). ADSGoogle Scholar
  182. Pantazis, D. A., Chen, X.-Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput.4, 908–919 (2008). Google Scholar
  183. Senn, H. M. & Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed.48, 1198–1229 (2009). Google Scholar
  184. Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K. & Frisch, M. J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM461–462, 1–21 (1999). Google Scholar
  185. Maseras, F. & Morokuma, K. IMOMM: a new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem.16, 1170–1179 (1995). Google Scholar
  186. Burke, K., Werschnik, J. & Gross, E. K. U. Time-dependent density functional theory: past, present, and future. J. Chem. Phys.123, 062206 (2005). ADSGoogle Scholar
  187. Finley, J., Malmqvist, P.-Å., Roos, B. O. & Serrano-Andrés, L. The multi-state CASPT2 method. Chem. Phys. Lett.288, 299–306 (1998). ADSGoogle Scholar
  188. Houk, K. N. & Liu, F. Holy grails for computational organic chemistry and biochemistry. Acc. Chem. Res.50, 539–543 (2017). Google Scholar
  189. Besora, M. et al. A quantitative model for alkane nucleophilicity based on C–H bond structural/topological descriptors. Angew. Chem. Int. Ed.59, 3112–3116 (2020). Google Scholar
  190. McLarney, B. D., Hanna, S., Musaev, D. G. & France, S. Predictive model for the [Rh2(esp)2]-catalyzed intermolecular C(sp 3 )–H bond insertion of β-carbonyl ester carbenes: interplay between theory and experiment. ACS Catal.9, 4526–4538 (2019). Google Scholar
  191. Zimmerman, P. M. Automated discovery of chemically reasonable elementary reaction steps. J. Comput. Chem.34, 1385–1392 (2013). Google Scholar
  192. Maeda, S., Harabuchi, Y., Takagi, M., Taketsugu, T. & Morokuma, K. Artificial force induced reaction (AFIR) method for exploring quantum chemical potential energy surfaces. Chem. Rec.16, 2232–2248 (2016). Google Scholar
  193. Reyes, R. L. et al. Asymmetric remote C–H borylation of aliphatic amides and esters with a modular iridium catalyst. Science369, 970–974 (2020). ADSGoogle Scholar
  194. Zahrt, A. F. et al. Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science363, eaau5631 (2019). Google Scholar
  195. Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev.117, 8908–8976 (2017). Google Scholar
  196. Giri, R., Shi, B.-F., Engle, K. M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C–H activation reactions: diastereoselectivity and enantioselectivity. Chem. Soc. Rev.38, 3242–3272 (2009). Google Scholar
  197. O’Malley, S. J., Tan, K. L., Watzke, A., Bergman, R. G. & Ellman, J. A. Total synthesis of (+)-lithospermic acid by asymmetric intramolecular alkylation via catalytic C–H bond activation. J. Am. Chem. Soc.127, 13496–13497 (2005). Google Scholar
  198. Kakiuchi, F., Le Gendre, P., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron Asymmetry11, 2647–2651 (2000). Google Scholar
  199. Wencel-Delord, J. & Colobert, F. Asymmetric C(sp 2 )–H activation. Chem. Eur. J.19, 14010–14017 (2013). Google Scholar
  200. Shi, B.-F., Maugel, N., Zhang, Y.-H. & Yu, J.-Q. PdII-catalyzed enantioselective activation of C(sp 2 )–H and C(sp 3 )–H bonds using monoprotected amino acids as chiral ligands. Angew. Chem. Int. Ed.47, 4882–4886 (2008). Google Scholar
  201. Shi, B.-F., Zhang, Y.-H., Lam, J. K., Wang, D.-H. & Yu, J.-Q. Pd(II)-catalyzed enantioselective C–H olefination of diphenylacetic acids. J. Am. Chem. Soc.132, 460–461 (2010). Google Scholar
  202. Laforteza, B. N., Chan, K. S. L. & Yu, J.-Q. Enantioselective ortho-C–H cross-coupling of diarylmethylamines with organoborons. Angew. Chem. Int. Ed.54, 11143–11146 (2015). Google Scholar
  203. Diesel, J. & Cramer, N. Generation of heteroatom stereocenters by enantioselective C–H functionalization. ACS Catal.9, 9164–9177 (2019). Google Scholar
  204. Albicker, M. R. & Cramer, N. Enantioselective palladium-catalyzed direct arylations at ambient temperature: access to indanes with quaternary stereocenters. Angew. Chem. Int. Ed.48, 9139–9142 (2009). Google Scholar
  205. Saget, T. & Cramer, N. Enantioselective C–H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters. Angew. Chem. Int. Ed.52, 7865–7868 (2013). Google Scholar
  206. Shintani, R., Otomo, H., Ota, K. & Hayashi, T. Palladium-catalyzed asymmetric synthesis of silicon-stereogenic dibenzosiloles via enantioselective C–H bond functionalization. J. Am. Chem. Soc.134, 7305–7308 (2012). Google Scholar
  207. Li, Z., Lin, Z.-Q., Yan, C.-G. & Duan, W.-L. Pd-catalyzed asymmetric C–H bond activation for the synthesis of P-stereogenic dibenzophospholes. Organometallics38, 3916–3920 (2019). Google Scholar
  208. Liao, G., Zhou, T., Yao, Q.-J. & Shi, B.-F. Recent advances in the synthesis of axially chiral biaryls via transition metal-catalysed asymmetric C–H functionalization. Chem. Commun.55, 8514–8523 (2019). Google Scholar
  209. Hazra, C. K., Dherbassy, Q., Wencel-Delord, J. & Colobert, F. Synthesis of axially chiral biaryls through sulfoxide-directed asymmetric mild C–H activation and dynamic kinetic resolution. Angew. Chem. Int. Ed.53, 13871–13875 (2014). Google Scholar
  210. Zheng, J. & You, S.-L. Construction of axial chirality by rhodium-catalyzed asymmetric dehydrogenative Heck coupling of biaryl compounds with alkenes. Angew. Chem. Int. Ed.53, 13244–13247 (2014). Google Scholar
  211. Liao, G., Zhang, T., Lin, Z.-K. & Shi, B.-F. Transition metal-catalyzed enantioselective C–H functionalization via chiral transient directing group strategies. Angew. Chem. Int. Ed.59, 19773–19786 (2020). Google Scholar
  212. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C–H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed.59, 13451–13457 (2020). Google Scholar
  213. Yamaguchi, K., Yamaguchi, J., Studer, A. & Itami, K. Hindered biaryls by C–H coupling: bisoxazoline-Pd catalysis leading to enantioselective C–H coupling. Chem. Sci.3, 2165–2169 (2012). Google Scholar
  214. Dherbassy, Q., Djukic, J.-P., Wencel-Delord, J. & Colobert, F. Two stereoinduction events in one C–H activation step: a route towards terphenyl ligands with two atropisomeric axes. Angew. Chem. Int. Ed.57, 4668–4672 (2018). Google Scholar
  215. Nguyen, Q.-H., Guo, S.-M., Royal, T., Baudoin, O. & Cramer, N. Intermolecular Palladium(0)-catalyzed atropo-enantioselective C–H arylation of heteroarenes. J. Am. Chem. Soc.142, 2161–2167 (2020). Google Scholar
  216. Ye, B. & Cramer, N. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C–H functionalization. Science338, 504–506 (2012). ADSGoogle Scholar
  217. Hyster, T. K., Knörr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science338, 500–503 (2012). ADSGoogle Scholar
  218. Coulter, M. M., Dornan, P. K. & Dong, V. M. Rh-catalyzed intramolecular olefin hydroacylation: enantioselective synthesis of seven- and eight-membered heterocycles. J. Am. Chem. Soc.131, 6932–6933 (2009). Google Scholar
  219. Woźniak, Ł. & Cramer, N. Enantioselective C–H bond functionalizations by 3d transition-metal catalysts. Trends Chem.1, 471–484 (2019). Google Scholar
  220. Loup, J. et al. Asymmetric iron-catalyzed C–H alkylation enabled by remote ligand meta-substitution. Angew. Chem. Int. Ed.56, 14197–14201 (2017). Google Scholar
  221. Yang, J. & Yoshikai, N. Cobalt-catalyzed enantioselective intramolecular hydroacylation of ketones and olefins. J. Am. Chem. Soc.136, 16748–16751 (2014). This publication achieves intramolecular hydroacylation in an asymmetric fashion employing a low-valent cobalt catalyst bearing a chiral diphosphine ligand. Google Scholar
  222. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp 3 )–H bond activation by chiral transition metal catalysts. Science359, eaao4798 (2018). Google Scholar
  223. Nakanishi, M., Katayev, D., Besnard, C. & Kündig, E. P. Fused indolines by palladium-catalyzed asymmetric C–C coupling involving an unactivated methylene group. Angew. Chem. Int. Ed.50, 7438–7441 (2011). Google Scholar
  224. Martin, N., Pierre, C., Davi, M., Jazzar, R. & Baudoin, O. Diastereo- and enantioselective intramolecular C(sp 3 )-H arylation for the synthesis of fused cyclopentanes. Chem. Eur. J.18, 4480–4484 (2012). Google Scholar
  225. Saget, T. & Cramer, N. Palladium(0)-catalyzed enantioselective C–H arylation of cyclopropanes: efficient access to functionalized tetrahydroquinolines. Angew. Chem. Int. Ed.51, 12842–12845 (2012). Google Scholar
  226. Pedroni, J. & Cramer, N. TADDOL-based phosphorus(III)-ligands in enantioselective Pd(0)-catalysed C–H functionalisations. Chem. Commun.51, 17647–17657 (2015). Google Scholar
  227. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C–H functionalization reactions. Acc. Chem. Res.53, 833–851 (2020). Google Scholar
  228. Sokolov, V. I., Troitskaya, L. L. & Reutov, O. A. Asymmetric cyclopalladation of dimethylaminomethylferrocene. J. Organomet. Chem.182, 537–546 (1979). This pioneering contribution achieves the asymmetric cyclopalladation of ferrocene derivatives. Google Scholar
  229. Hu, L. et al. PdII-catalyzed enantioselective C(sp 3 )–H activation/cross-coupling reactions of free carboxylic acids. Angew. Chem. Int. Ed.58, 2134–2138 (2019). Google Scholar
  230. Chen, G. et al. Ligand-accelerated enantioselective methylene C(sp 3 )–H bond activation. Science353, 1023–1027 (2016). ADSGoogle Scholar
  231. Reyes, R. L., Sato, M., Iwai, T. & Sawamura, M. Asymmetric synthesis of α-aminoboronates via rhodium-catalyzed enantioselective C(sp 3 )–H borylation. J. Am. Chem. Soc.142, 589–597 (2020). Google Scholar
  232. Park, H. S., Fan, Z., Zhu, R.-Y. & Yu, J.-Q. Distal γ-C(sp 3 )–H olefination of ketone derivatives and free carboxylic acids. Angew. Chem. Int. Ed.59, 12853–12859 (2020). Google Scholar
  233. Fukagawa, S. et al. Enantioselective C(sp 3 )–H amidation of thioamides catalyzed by a cobalt III /chiral carboxylic acid hybrid system. Angew. Chem. Int. Ed.58, 1153–1157 (2019). This study accomplishes challenging asymmetric amidations of C(sp3)–H bonds via Earth-abundant cobalt/chiral carboxylic acid catalysis. Google Scholar
  234. Davies, H. M. L. & Liao, K. Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nat. Rev. Chem.3, 347–360 (2019). Google Scholar
  235. Johnson, J. A. & Sames, D. C–H bond activation of hydrocarbon segments in complex organic molecules: total synthesis of the antimitotic rhazinilam. J. Am. Chem. Soc.122, 6321–6322 (2000). This study sets the stage for applications of C–H activations to natural product and total syntheses. Google Scholar
  236. Dangel, B. D., Godula, K., Youn, S. W., Sezen, B. & Sames, D. C–C bond formation via C–H bond activation: synthesis of the core of teleocidin B4. J. Am. Chem. Soc.124, 11856–11857 (2002). Google Scholar
  237. Li, J., Zhang, X. & Renata, H. Asymmetric chemoenzymatic synthesis of (–)-podophyllotoxin and related aryltetralin lignans. Angew. Chem. Int. Ed.58, 11657–11660 (2019). Google Scholar
  238. Potter, T. J. & Ellman, J. A. Total synthesis of (+)-pancratistatin by the Rh(III)-catalyzed addition of a densely functionalized benzamide to a sugar-derived nitroalkene. Org. Lett.19, 2985–2988 (2017). Google Scholar
  239. Xu, X., Liu, Y. & Park, C.-M. Rhodium(III)-catalyzed intramolecular annulation through C–H activation: total synthesis of (±)-antofine, (±)-septicine, (±)-tylophorine, and rosettacin. Angew. Chem. Int. Ed.51, 9372–9376 (2012). Google Scholar
  240. Chapman, L. M., Beck, J. C., Wu, L. & Reisman, S. E. Enantioselective total synthesis of (+)-psiguadial B. J. Am. Chem. Soc.138, 9803–9806 (2016). Google Scholar
  241. Ye, Q., Qu, P. & Snyder, S. A. Total syntheses of scaparvins B, C, and D enabled by a key C–H functionalization. J. Am. Chem. Soc.139, 18428–18431 (2017). Google Scholar
  242. Hung, K., Condakes, M. L., Morikawa, T. & Maimone, T. J. Oxidative entry into the Illicium sesquiterpenes: enantiospecific synthesis of (+)-pseudoanisatin. J. Am. Chem. Soc.138, 16616–16619 (2016). Google Scholar
  243. Siler, D. A., Mighion, J. D. & Sorensen, E. J. An enantiospecific synthesis of jiadifenolide. Angew. Chem. Int. Ed.53, 5332–5335 (2014). Google Scholar
  244. Leal, R. A. et al. Application of a palladium-catalyzed C–H functionalization/indolization method to syntheses of cis-trikentrin A and herbindole B. Angew. Chem. Int. Ed.55, 11824–11828 (2016). Google Scholar
  245. Fox, J. C., Gilligan, R. E., Pitts, A. K., Bennett, H. R. & Gaunt, M. J. The total synthesis of K-252c (staurosporinone) via a sequential C–H functionalisation strategy. Chem. Sci.7, 2706–2710 (2016). Google Scholar
  246. Lindovska, P. & Movassaghi, M. Concise synthesis of (–)-hodgkinsine, (–)-calycosidine, (–)-hodgkinsine B, (–)-quadrigemine C, and (–)-psycholeine via convergent and directed modular assembly of cyclotryptamines. J. Am. Chem. Soc.139, 17590–17596 (2017). Google Scholar
  247. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature483, 70–73 (2012). ADSGoogle Scholar
  248. Berger, M., Knittl-Frank, C., Bauer, S., Winter, G. & Maulide, N. Application of relay C–H oxidation logic to polyhydroxylated oleanane triterpenoids. Chem6, 1183–1189 (2020). Google Scholar
  249. Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc.138, 696–702 (2016). Google Scholar
  250. Hong, B. et al. Enantioselective total synthesis of (–)-incarviatone A. J. Am. Chem. Soc.137, 11946–11949 (2015). Google Scholar
  251. Feng, Y. et al. Total synthesis of verruculogen and fumitremorgin a enabled by ligand-controlled C–H borylation. J. Am. Chem. Soc.137, 10160–10163 (2015). Google Scholar
  252. Fischer, D. F. & Sarpong, R. Total synthesis of (+)-complanadine a using an iridium-catalyzed pyridine C–H functionalization. J. Am. Chem. Soc.132, 5926–5927 (2010). Google Scholar
  253. Oeschger, R. et al. Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science368, 736–741 (2020). ADSGoogle Scholar
  254. Cherney, E. C., Lopchuk, J. M., Green, J. C. & Baran, P. S. A unified approach to ent-atisane diterpenes and related alkaloids: synthesis of (–)-methyl atisenoate, (–)-isoatisine, and the hetidine skeleton. J. Am. Chem. Soc.136, 12592–12595 (2014). Google Scholar
  255. Renata, H. et al. Development of a concise synthesis of ouabagenin and hydroxylated corticosteroid analogues. J. Am. Chem. Soc.137, 1330–1340 (2015). Google Scholar
  256. Xue, F. et al. Formal total syntheses of (–)- and (+)-actinophyllic acid. J. Org. Chem.83, 754–764 (2018). Google Scholar
  257. Furst, L., Narayanam, J. M. R. & Stephenson, C. R. J. Total synthesis of (+)-gliocladin C enabled by visible-light photoredox catalysis. Angew. Chem. Int. Ed.50, 9655–9659 (2011). Google Scholar
  258. Rosen, B. R., Werner, E. W., O’Brien, A. G. & Baran, P. S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc.136, 5571–5574 (2014). Google Scholar
  259. Loskot, S. A., Romney, D. K., Arnold, F. H. & Stoltz, B. M. Enantioselective total synthesis of nigelladine a via late-stage C–H oxidation enabled by an engineered P450 enzyme. J. Am. Chem. Soc.139, 10196–10199 (2017). Google Scholar
  260. de Rond, T. et al. Oxidative cyclization of prodigiosin by an alkylglycerol monooxygenase-like enzyme. Nat. Chem. Biol.13, 1155–1157 (2017). Google Scholar
  261. Zwick, C. R. & Renata, H. Evolution of biocatalytic and chemocatalytic C–H functionalization strategy in the synthesis of manzacidin C. J. Org. Chem.83, 7407–7415 (2018). Google Scholar
  262. Zhang, Y., Zhang, H., Ghosh, D. & Williams, R. O. Just how prevalent are peptide therapeutic products? A critical review. Int. J. Pharm.587, 119491–119491 (2020). Google Scholar
  263. Brandhofer, T. & García Mancheño, O. Site-selective C–H bond activation/functionalization of α-amino acids and peptide-like derivatives. Eur. J. Org. Chem.2018, 6050–6067 (2018). Google Scholar
  264. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed.57, 14700–14717 (2018). Google Scholar
  265. Sengupta, S. & Mehta, G. Macrocyclization via C–H functionalization: a new paradigm in macrocycle synthesis. Org. Biomol. Chem.18, 1851–1876 (2020). Google Scholar
  266. Ruiz-Rodriguez, J., Albericio, F. & Lavilla, R. Postsynthetic modification of peptides: chemoselective C-arylation of tryptophan residues. Chem. Eur. J.16, 1124–1127 (2010). Google Scholar
  267. Dong, H., Limberakis, C., Liras, S., Price, D. & James, K. Peptidic macrocyclization via palladium-catalyzed chemoselective indole C-2 arylation. Chem. Commun.48, 11644–11646 (2012). Google Scholar
  268. Zhu, Y., Bauer, M. & Ackermann, L. Late-stage peptide diversification by bioorthogonal catalytic C–H arylation at 23 °C in H2O. Chem. Eur. J.21, 9980–9983 (2015). Google Scholar
  269. Reay, A. J. et al. Mild and regioselective Pd(OAc)2-catalyzed C–H arylation of tryptophans by [ArN2]X, promoted by tosic acid. ACS Catal.7, 5174–5179 (2017). Google Scholar
  270. Mendive-Tapia, L. et al. New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues. Nat. Commun.6, 7160 (2015). ADSGoogle Scholar
  271. Perez-Rizquez, C., Abian, O. & Palomo, J. M. Site-selective modification of tryptophan and protein tryptophan residues through PdNP bionanohybrid-catalysed C–H activation in aqueous media. Chem. Commun.55, 12928–12931 (2019). This publication represents the forefront of the application of C–H activation to peptide modification, detailing the site-selective C–H activation of one or two Trp residues in the protein Cal-B in aqueous media at room temperature using a palladium nanoparticle biohybrid catalyst. Google Scholar
  272. Hansen, M. B., Hubálek, F., Skrydstrup, T. & Hoeg-Jensen, T. Chemo- and regioselective ethynylation of tryptophan-containing peptides and proteins. Chem. Eur. J.22, 1572–1576 (2016). Google Scholar
  273. Tolnai, G. L., Brand, J. P. & Waser, J. Gold-catalyzed direct alkynylation of tryptophan in peptides using TIPS-EBX. Beilstein. J. Org. Chem.12, 745–749 (2016). Google Scholar
  274. Bai, Z., Cai, C., Yu, Z. & Wang, H. Backbone-enabled directional peptide macrocyclization through late-stage palladium-catalyzed δ-C(sp 2 )–H olefination. Angew. Chem. Int. Ed.57, 13912–13916 (2018). Google Scholar
  275. Bai, Z., Cai, C., Sheng, W., Ren, Y. & Wang, H. Late-stage peptide macrocyclization by palladium-catalyzed site-selective C–H olefination of tryptophan. Angew. Chem. Int. Ed.59, 14686–14692 (2020). Google Scholar
  276. Schischko, A., Ren, H., Kaplaneris, N. & Ackermann, L. Bioorthogonal diversification of peptides through selective ruthenium(II)-catalyzed C–H activation. Angew. Chem. Int. Ed.56, 1576–1580 (2017). Google Scholar
  277. Schischko, A. et al. Late-stage peptide C–H alkylation for bioorthogonal C–H activation featuring solid phase peptide synthesis. Nat. Commun.10, 3553 (2019). ADSGoogle Scholar
  278. Ruan, Z., Sauermann, N., Manoni, E. & Ackermann, L. Manganese-catalyzed C–H alkynylation: expedient peptide synthesis and modification. Angew. Chem. Int. Ed.56, 3172–3176 (2017). Google Scholar
  279. Wang, W., Subramanian, P., Martinazzoli, O., Wu, J. & Ackermann, L. Glycopeptides by linch-pin C–H activations for peptide–carbohydrate conjugation by manganese(I)-catalysis. Chem. Eur. J.25, 10585–10589 (2019). Google Scholar
  280. Lorion, M. M., Kaplaneris, N., Son, J., Kuniyil, R. & Ackermann, L. Late-stage peptide diversification through cobalt-catalyzed C–H activation: sequential multicatalysis for stapled peptides. Angew. Chem. Int. Ed.58, 1684–1688 (2019). Google Scholar
  281. Peng, J., Li, C., Khamrakulov, M., Wang, J. & Liu, H. Rhodium(III)-catalyzed C–H alkenylation: access to maleimide-decorated tryptophan and tryptophan-containing peptides. Org. Lett.22, 1535–1541 (2020). Google Scholar
  282. Gong, W., Zhang, G., Liu, T., Giri, R. & Yu, J. Q. Site-selective C(sp 3 )–H functionalization of di-, tri-, and tetrapeptides at the N-terminus. J. Am. Chem. Soc.136, 16940–16946 (2014). Google Scholar
  283. Tang, J., He, Y., Chen, H., Sheng, W. & Wang, H. Synthesis of bioactive and stabilized cyclic peptides by macrocyclization using C(sp 3 )–H activation. Chem. Sci.8, 4565–4570 (2017). Google Scholar
  284. Noisier, A. F. M., García, J., Ionuţ, I. A. & Albericio, F. Stapled peptides by late-stage C(sp 3 )–H activation. Angew. Chem. Int. Ed.56, 314–318 (2017). Google Scholar
  285. Mondal, B., Roy, B. & Kazmaier, U. Stereoselective peptide modifications via β-C(sp 3 )–H arylations. J. Org. Chem.81, 11646–11655 (2016). Google Scholar
  286. Li, X. et al. Synthesis of cyclophane-braced peptide macrocycles via palladium-catalyzed intramolecular C(sp 3 )–H arylation of N-methyl alanine at C-termini. Org. Lett.22, 0–4 (2020). Google Scholar
  287. Bauer, M., Wang, W., Lorion, M. M., Dong, C. & Ackermann, L. Internal peptide late-stage diversification: peptide-isosteric triazoles for primary and secondary C(sp 3 )–H activation. Angew. Chem. Int. Ed.57, 203–207 (2018). Google Scholar
  288. Wang, W., Lorion, M. M., Martinazzoli, O. & Ackermann, L. Bodipy peptide labeling by late-stage C(sp 3 )–H activation. Angew. Chem. Int. Ed.57, 10554–10558 (2018). Google Scholar
  289. Wu, J., Kaplaneris, N., Ni, S., Kaltenhäuser, F. & Ackermann, L. Late-stage C(sp 2 )–H and C(sp 3 )–H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem. Sci.11, 6521–6526 (2020). Google Scholar
  290. Zhan, B. B., Fan, J., Jin, L. & Shi, B. F. Divergent synthesis of silicon-containing peptides via Pd-catalyzed post-assembly γ-C(sp 3 )–H silylation. ACS Catal.9, 3298–3303 (2019). Google Scholar
  291. Li, B. et al. Construction of natural-product-like cyclophane-braced peptide macrocycles via sp 3 C–H arylation. J. Am. Chem. Soc.141, 9401–9407 (2019). Google Scholar
  292. Liu, L., Liu, Y. H. & Shi, B. F. Synthesis of amino acids and peptides with bulky side chains: via ligand-enabled carboxylate-directed γ-C(sp 3 )–H arylation. Chem. Sci.11, 290–294 (2020). Google Scholar
  293. Weng, Y. et al. Peptide late-stage C(sp 3 )–H arylation by native asparagine assistance without exogenous directing group. Chem. Sci.11, 9290–9295 (2020). Google Scholar
  294. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev.116, 14225–14274 (2016). Google Scholar
  295. Nielsen, K. T., Bechgaard, K. & Krebs, F. C. Removal of palladium nanoparticles from polymer materials. Macromolecules38, 658–659 (2005). ADSGoogle Scholar
  296. Ishikawa, T., Motoyanagi, J. & Minoda, M. Synthesis of brush-shaped π-conjugated polymers based on well-defined thiophene-end-capped poly(vinyl ether)s. Chem. Lett.45, 415–417 (2016). Google Scholar
  297. Okamoto, K., Housekeeper, J. B., Michael, F. E. & Luscombe, C. K. Thiophene based hyperbranched polymers with tunable branching using direct arylation methods. Polym. Chem.4, 3499–3506 (2013). Google Scholar
  298. Liu, D.-P. et al. Fluorinated porous organic polymers via direct C–H arylation polycondensation. ACS Macro Lett.2, 522–526 (2013). Google Scholar
  299. Schipper, D. J. & Fagnou, K. Direct arylation as a synthetic tool for the synthesis of thiophene-based organic electronic materials. Chem. Mater.23, 1594–1600 (2011). Google Scholar
  300. Gobalasingham, N. S., Noh, S. & Thompson, B. C. Palladium-catalyzed oxidative direct arylation polymerization (Oxi-DArP) of an ester-functionalized thiophene. Polym. Chem.7, 1623–1631 (2016). Google Scholar
  301. Lu, W., Kuwabara, J. & Kanbara, T. Polycondensation of dibromofluorene analogues with tetrafluorobenzene via direct arylation. Macromolecules44, 1252–1255 (2011). ADSGoogle Scholar
  302. Bohra, H. & Wang, M. Direct C–H arylation: a ‘Greener’ approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A5, 11550–11571 (2017). Google Scholar
  303. Gather, M. C., Köhnen, A. & Meerholz, K. White organic light-emitting diodes. Adv. Mater.23, 233–248 (2011). Google Scholar
  304. Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater.23, 733–758 (2011). Google Scholar
  305. Jin, Y. et al. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater.28, 9811–9818 (2016). Google Scholar
  306. Wakioka, M., Kitano, Y. & Ozawa, F. A highly efficient catalytic system for polycondensation of 2,7-dibromo-9,9-dioctylfluorene and 1,2,4,5-tetrafluorobenzene via direct arylation. Macromolecules46, 370–374 (2013). ADSGoogle Scholar
  307. Pankow, R. M., Ye, L. & Thompson, B. C. Copper catalyzed synthesis of conjugated copolymers using direct arylation polymerization. Polym. Chem.9, 4120–4124 (2018). Google Scholar
  308. Kuwabara, J. et al. Synthesis of conjugated polymers via direct C–H/C–Cl coupling reactions using a Pd/Cu binary catalytic system. Polym. Chem.10, 2298–2304 (2019). Google Scholar
  309. Tsuchiya, K. & Ogino, K. Catalytic oxidative polymerization of thiophene derivatives. Polym. J.45, 281–286 (2013). Google Scholar
  310. Huang, Q. et al. Cu-catalysed oxidative C–H/C–H coupling polymerisation of benzodiimidazoles: an efficient approach to regioregular polybenzodiimidazoles for blue-emitting materials. Chem. Commun.50, 13739–13741 (2014). Google Scholar
  311. Della, Ca’, N., Fontana, M., Motti, E. & Catellani, M. Pd/Norbornene: a winning combination for selective aromatic functionalization via C–H bond activation. Acc. Chem. Res.49, 1389–1400 (2016). Google Scholar
  312. Liu, S., Jin, Z., Teo, Y. C. & Xia, Y. Efficient synthesis of rigid ladder polymers via palladium catalyzed annulation. J. Am. Chem. Soc.136, 17434–17437 (2014). Google Scholar
  313. Lai, H. W. H. et al. Tuning the molecular weights, chain packing, and gas-transport properties of CANAL ladder polymers by short alkyl substitutions. Macromolecules52, 6294–6302 (2019). ADSGoogle Scholar
  314. Ma, X. et al. Facile synthesis and study of microporous catalytic arene–norbornene annulation — Tröger’s base ladder polymers for membrane air separation. ACS Macro Lett.9, 680–685 (2020). Google Scholar
  315. Yang, Y., Nishiura, M., Wang, H. & Hou, Z. Metal-catalyzed CH activation for polymer synthesis and functionalization. Coord. Chem. Rev.376, 506–532 (2018). Google Scholar
  316. Ringelberg, S. N., Meetsma, A., Hessen, B. & Teuben, J. H. Thiophene C–H activation as a chain-transfer mechanism in ethylene polymerization: catalytic formation of thienyl-capped polyethylene. J. Am. Chem. Soc.121, 6082–6083 (1999). Google Scholar
  317. Yamamoto, A., Nishiura, M., Oyamada, J., Koshino, H. & Hou, Z. Scandium-catalyzed syndiospecific chain-transfer polymerization of styrene using anisoles as a chain transfer agent. Macromolecules49, 2458–2466 (2016). ADSGoogle Scholar
  318. Kaneko, H., Nagae, H., Tsurugi, H. & Mashima, K. End-functionalized polymerization of 2-vinylpyridine through initial C–H bond activation of N-heteroaromatics and internal alkynes by yttrium ene–diamido complexes. J. Am. Chem. Soc.133, 19626–19629 (2011). Google Scholar
  319. Schaffer, A., Kränzlein, M. & Rieger, B. Precise synthesis of poly(dimethylsiloxane) copolymers through C–H bond-activated macroinitiators via yttrium-mediated group transfer polymerization and ring-opening polymerization. Macromolecules53, 8382–8392 (2020). ADSGoogle Scholar
  320. Perry, M. R. et al. Catalytic synthesis of secondary amine-containing polymers: variable hydrogen bonding for tunable rheological properties. Macromolecules49, 4423–4430 (2016). ADSGoogle Scholar
  321. Kuanr, N. et al. Dynamic cross-linking of catalytically synthesized poly(aminonorbornenes). Macromolecules53, 2649–2661 (2020). ADSGoogle Scholar
  322. Guo, H., Tapsak, M. A. & Weber, W. P. Ruthenium-catalyzed regioselective step-growth copolymerization of p-(dialkylamino)acetophenones and α,ω-dienes. Macromolecules28, 4714–4718 (1995). ADSGoogle Scholar
  323. Shin, J. et al. Controlled functionalization of crystalline polystyrenes via activation of aromatic C–H bonds. Macromolecules40, 8600–8608 (2007). ADSGoogle Scholar
  324. Kondo, Y. et al. Rhodium-catalyzed, regiospecific functionalization of polyolefins in the melt. J. Am. Chem. Soc.124, 1164–1165 (2002). Google Scholar
  325. Gupta, S. K. & Weber, W. P. Ruthenium-catalyzed chemical modification of poly(vinylmethylsiloxane) with 9-acetylphenanthrene. Macromolecules35, 3369–3373 (2002). ADSGoogle Scholar
  326. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev.45, 546–576 (2016). This review outlines the strategies for LSF very well. Google Scholar
  327. Börgel, J. & Ritter, T. Late-stage functionalization. Chem6, 1877–1887 (2020). Google Scholar
  328. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem.10, 383–394 (2018). Google Scholar
  329. Gensch, T., Hopkinson, M. N., Glorius, F. & Wencel-Delord, J. Mild metal-catalyzed C–H activation: examples and concepts. Chem. Soc. Rev.45, 2900–2936 (2016). Google Scholar
  330. Dai, H.-X., Stepan, A. F., Plummer, M. S., Zhang, Y.-H. & Yu, J.-Q. Divergent C–H functionalizations directed by sulfonamide pharmacophores: late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc.133, 7222–7228 (2011). This article presents a divergent approach to SAR exploration by C–H functionalization. Google Scholar
  331. Tomberg, A. et al. Relative strength of common directing groups in palladium-catalyzed aromatic C–H activation. iScience20, 373–391 (2019). ADSGoogle Scholar
  332. Li, J., De Sarkar, S. & Ackermann, L. Meta- and para-selective C–H functionalization by C–H activation. Top. Organomet. Chem.55, 217–257 (2016). Google Scholar
  333. Friis, S. D., Johansson, M. J. & Ackermann, L. Cobalt-catalysed C–H methylation for late-stage drug diversification. Nat. Chem.12, 511–519 (2020). This study achieves the late-stage diversification of various natural products and drugs by C–H methylation under sustainable cobalt catalysis. Google Scholar
  334. Wencel-Delord, J. Decorating and diversifying drugs. Nat. Chem.12, 505–506 (2020). Google Scholar
  335. Rodrigalvarez, J. et al. Catalytic C(sp 3 )–H bond activation in tertiary alkylamines. Nat. Chem.12, 76–81 (2020). This publication achieves challenging C(sp3)–H activations in tertiary alkylamines employing a palladium/mono-protected amino acid catalyst. Google Scholar
  336. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev.110, 890–931 (2010). Google Scholar
  337. Larsen, M. A. & Hartwig, J. F. Iridium-catalyzed C–H borylation of heteroarenes: scope, regioselectivity, application to late-stage functionalization, and mechanism. J. Am. Chem. Soc.136, 4287–4299 (2014). This article fully investigates the scope of iridium-catalysed C–H borylation of heteroarenes, including guidelines for the regiochemical outcome of these processes. Google Scholar
  338. Ahneman, D. T., Estrada, J. G., Lin, S., Dreher, S. D. & Doyle, A. G. Predicting reaction performance in C–N cross-coupling using machine learning. Science360, 186–190 (2018). ADSGoogle Scholar
  339. Loup, J., Dhawa, U., Pesciaioli, F., Wencel-Delord, J. & Ackermann, L. Enantioselective C–H activation with earth-abundant 3d transition metals. Angew. Chem. Int. Ed.58, 12803–12818 (2019). This review summarizes recent developments in the challenging area of asymmetric C–H activation under environmentally benign 3dtransition metal catalysis. Google Scholar
  340. Fan, Z. et al. Rational development of remote C–H functionalization of biphenyl: experimental and computational studies. Angew. Chem. Int. Ed.59, 4770–4777 (2020). This combined experimental and computational study discloses efficient and selective nitrile-directedmeta-C–H activations, proceeding through a hetero-bimetallic silver–palladium intermediate. Google Scholar
  341. Yu, Q., Hu, L., Wang, Y., Zheng, S. & Huang, J. Directed meta-selective bromination of arenes with ruthenium catalysts. Angew. Chem. Int. Ed.54, 15284–15288 (2015). Google Scholar
  342. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C–H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc.137, 11574–11577 (2015). Google Scholar
  343. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature519, 334–338 (2015). ADSGoogle Scholar
  344. Meng, G. et al. Achieving site-selectivity for C–H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc.142, 10571–10591 (2020). Google Scholar
  345. Funes-Ardoiz, I. & Maseras, F. Oxidative coupling mechanisms: current state of understanding. ACS Catal.8, 1161–1172 (2018). Google Scholar
  346. Ano, Y. & Chatani, N. ortho-Directed C–H alkylation of substituted benzenes. Org. React.100, 622–670 (2019). Google Scholar
  347. Guillemard, L. & Wencel-Delord, J. When metal-catalyzed C–H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem.16, 1754–1804 (2020). Google Scholar
  348. Capaldo, L., Quadri, L. L. & Ravelli, D. Merging photocatalysis with electrochemistry: the dawn of a new alliance in organic synthesis. Angew. Chem. Int. Ed.58, 17508–17510 (2019). Google Scholar
  349. Samanta, R. C., Meyer, T. H., Siewert, I. & Ackermann, L. Renewable resources for sustainable metallaelectro-catalyzed C–H activation. Chem. Sci.11, 8657–8670 (2020). Google Scholar
  350. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3d metallaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev.49, 4254–4272 (2020). Google Scholar
  351. Jorner, K., Tomberg, A., Bauer, C., Sköld, C. & Norrby, P.-O. Organic reactivity from mechanism to machine learning. Nat. Rev. Chem.5, 240–255 (2021). Google Scholar
  352. Struble, T. J., Coley, C. W. & Jensen, K. F. Multitask prediction of site selectivity in aromatic C–H functionalization reactions. React. Chem. Eng.5, 896–902 (2020). Google Scholar
  353. Dwivedi, V., Kalsi, D. & Sundararaju, B. Electrochemical-/photoredox aspects of transition metal-catalyzed directed C–H bond activation. ChemCatChem11, 5160–5187 (2019). Google Scholar
  354. De Abreu, M., Belmont, P. & Brachet, E. Synergistic photoredox/transition-metal catalysis for carbon–carbon bond formation reactions. Eur. J. Org. Chem.2020, 1327–1378 (2020). Google Scholar
  355. Fabry, D. C. & Rueping, M. Merging visible light photoredox catalysis with metal catalyzed C–H activations: on the role of oxygen and superoxide ions as oxidants. Acc. Chem. Res.49, 1969–1979 (2016). Google Scholar
  356. Zoller, J., Fabry, D. C., Ronge, M. A. & Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C–H activation. Angew. Chem. Int. Ed.53, 13264–13268 (2014). Google Scholar
  357. Fabry, D. C., Zoller, J., Raja, S. & Rueping, M. Combining rhodium and photoredox catalysis for C–H functionalizations of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed.53, 10228–10231 (2014). Google Scholar
  358. Fabry, D. C., Ronge, M. A., Zoller, J. & Rueping, M. C–H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant. Angew. Chem. Int. Ed.54, 2801–2805 (2015). Google Scholar
  359. Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc.133, 18566–18569 (2011). Google Scholar
  360. Sahoo, M. K., Midya, S. P., Landge, V. G. & Balaraman, E. A unified strategy for silver-, base-, and oxidant-free direct arylation of C–H bonds. Green Chem.19, 2111–2117 (2017). Google Scholar
  361. Jiang, J., Zhang, W.-M., Dai, J.-J., Xu, J. & Xu, H.-J. Visible-light-promoted C–H arylation by merging palladium catalysis with organic photoredox catalysis. J. Org. Chem.82, 3622–3630 (2017). Google Scholar
  362. Zhou, C., Li, P., Zhu, X. & Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett.17, 6198–6201 (2015). Google Scholar
  363. Sharma, U. K., Gemoets, H. P. L., Schröder, F., Noël, T. & & Van der Eycken, E. V. Merger of visible-light photoredox catalysis and C–H activation for the room-temperature C-2 acylation of indoles in batch and flow. ACS Catal.7, 3818–3823 (2017). Google Scholar
  364. Gandeepan, P., Koeller, J., Korvorapun, K., Mohr, J. & Ackermann, L. Visible-light for ruthenium-catalyzed meta-C–H alkylation at room temperature. Angew. Chem. Int. Ed.58, 9820–9825 (2019). Google Scholar
  365. Greaney, M. & Sagadevan, A. Meta-selective C–H activation of arenes at room temperature using visible light: dual-function ruthenium catalysis. Angew. Chem. Int. Ed.58, 9826–9830 (2019). Google Scholar
  366. Thongpaen, J. et al. Visible light induced rhodium(I)-catalyzed C–H borylation. Angew. Chem. Int. Ed.58, 15244–15248 (2019). Google Scholar
  367. Gauchot, V., Sutherland, D. R. & Lee, A. L. Dual gold and photoredox catalysed C–H activation of arenes for aryl–aryl cross couplings. Chem. Sci.8, 2885–2889 (2017). Google Scholar
  368. Liang, Y.-F., Steinbock, R., Yang, L. & Ackermann, L. Continuous visible-light photoflow approach for a manganese-catalyzed (het)arene C–H arylation. Angew. Chem. Int. Ed.57, 10625–10629 (2018). Google Scholar
  369. Yang, F., Koeller, J. & Ackermann, L. Photoinduced copper-catalyzed C–H arylation at room temperature. Angew. Chem. Int. Ed.55, 4759–4762 (2016). Google Scholar
  370. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci.7, 89–93 (2016). Google Scholar
  371. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res.53, 84–104 (2020). Google Scholar
  372. Ma, C., Fang, P. & Mei, T.-S. Recent advances in C–H functionalization using electrochemical transition metal catalysis. ACS Catal.8, 7179–7189 (2018). Google Scholar
  373. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev.47, 5786–5865 (2018). Google Scholar
  374. Kathiravan, S., Suriyanarayanan, S. & Nicholls, I. A. Electrooxidative amination of sp 2 C–H bonds: coupling of amines with aryl amides via copper catalysis. Org. Lett.21, 1968–1972 (2019). Google Scholar
  375. Zhang, S.-K., Samanta, R. C., Sauermann, N. & Ackermann, L. Nickel-catalyzed electrooxidative C–H amination: support for nickel(IV). Chem. Eur. J.24, 19166–19170 (2018). Google Scholar
  376. Tang, S., Wang, D., Liu, Y., Zeng, L. & Lei, A. Cobalt-catalyzed electrooxidative C–H/N–H [4 + 2] annulation with ethylene or ethyne. Nat. Commun.9, 798 (2018). ADSGoogle Scholar
  377. Qiu, Y., Tian, C., Massignan, L., Rogge, T. & Ackermann, L. Electrooxidative ruthenium-catalyzed C–H/O–H annulation by weak O-coordination. Angew. Chem. Int. Ed.57, 5818–5822 (2018). Google Scholar
  378. Ma, C. et al. Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochemistry. Chem. Commun.53, 12189–12192 (2017). Google Scholar
  379. Kakiuchi, F. et al. Palladium-catalyzed aromatic C–H halogenation with hydrogen halides by means of electrochemical oxidation. J. Am. Chem. Soc.131, 11310–11311 (2009). Google Scholar
  380. Amatore, C., Cammoun, C. & Jutand, A. Electrochemical recycling of benzoquinone in the Pd/benzoquinone-catalyzed Heck-type reactions from arenes. Adv. Synth. Catal.349, 292–296 (2007). Google Scholar
  381. Samanta, R. C., Struwe, J. & Ackermann, L. Nickela-electrocatalyzed mild C–H alkylations at room temperature. Angew. Chem. Int. Ed.59, 14154–14159 (2020). Google Scholar
  382. Qiu, Y., Scheremetjew, A., Finger, L. H. & Ackermann, L. Electrophotocatalytic undirected C–H trifluoromethylations of (het)arenes. Chem. Eur. J.26, 3241–3246 (2020). Google Scholar
  383. Wang, F. & Stahl, S. S. Merging photochemistry with electrochemistry: functional-group tolerant electrochemical amination of C(sp 3 )–H bonds. Angew. Chem. Int. Ed.58, 6385–6390 (2019). Google Scholar
  384. Kong, W.-J. et al. Flow rhodaelectro-catalyzed alkyne annulations by versatile C–H activation: mechanistic support for rhodium(III/IV). J. Am. Chem. Soc.141, 17198–17206 (2019). Google Scholar
  385. Noël, T., Cao, Y. & Laudadio, G. The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res.52, 2858–2869 (2019). Google Scholar
  386. Meyer, T. H., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem6, 2484–2496 (2020). Google Scholar
  387. Wencel-Delord, J. & Glorius, F. C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem.5, 369–375 (2013). Google Scholar
  388. Mehta, A., Saha, B., Koohang, A. A. & Chorghade, M. S. Arene ruthenium catalyst MCAT-53 for the synthesis of heterobiaryl compounds in water through aromatic C–H bond activation. Org. Process. Res. Dev.22, 1119–1130 (2018). Google Scholar
  389. Ackermann, L. Robust ruthenium(II)-catalyzed C–H arylations: carboxylate assistance for the efficient synthesis of angiotensin-II-receptor blockers. Org. Process. Res. Dev.19, 260–269 (2015). Google Scholar
  390. Park, Y., Jee, S., Kim, J. G. & Chang, S. Study of sustainability and scalability in the Cp*Rh(III)-catalyzed direct C–H amidation with 1,4,2-dioxazol-5-ones. Org. Process. Res. Dev.19, 1024–1029 (2015). Google Scholar
  391. Pitzer, L., Schafers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed.58, 8572–8576 (2019). Google Scholar
  392. Mennen, S. M. et al. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future. Org. Process Res. Dev.23, 1213–1242 (2019). Google Scholar
  393. Grimme, S. & Schreiner, P. R. Computational chemistry: the fate of current methods and future challenges. Angew. Chem. Int. Ed.57, 4170–4176 (2018). Google Scholar
  394. Gandeepan, P., Kaplaneris, N., Santoro, S., Vaccaro, L. & Ackermann, L. Biomass-derived solvents for sustainable transition metal-catalyzed C–H activation. ACS Sustain. Chem. Eng.7, 8023–8040 (2019). Google Scholar
  395. Santoro, S., Kozhushkov, S. I., Ackermann, L. & Vaccaro, L. Heterogeneous catalytic approaches in C–H activation reactions. Green Chem.18, 3471–3493 (2016). Google Scholar
  396. Strieth-Kalthoff, F., Sandfort, F., Segler, M. H. S. & Glorius, F. Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev.49, 6154–6168 (2020). Google Scholar
  397. Nugent, W. A., Ovenall, D. W. & Holmes, S. J. Catalytic C–H activation in early transition-metal dialkylamides and alkoxides. Organometallics2, 161–162 (1983). Google Scholar
  398. Gilmour, D. J., Lauzon, J. M. P., Clot, E. & Schafer, L. L. Ta-catalyzed hydroaminoalkylation of alkenes: insights into ligand-modified reactivity using DFT. Organometallics37, 4387–4394 (2018). Google Scholar
  399. Maspero, F. & Clerici, M. G. Catalytic C-alkylation of secondary amines with alkenes. Synthesis1980, 305–306 (1980). Google Scholar
  400. Herzon, S. B. & Hartwig, J. F. Direct, catalytic hydroaminoalkylation of unactivated olefins with N-alkyl arylamines. J. Am. Chem. Soc.129, 6690–6691 (2007). Google Scholar
  401. Prochnow, I., Zark, P., Müller, T. & Doye, S. The mechanism of the titanium-catalyzed hydroaminoalkylation of alkenes. Angew. Chem. Int. Ed.50, 6401–6405 (2011). Google Scholar
  402. Bexrud, J. A., Eisenberger, P., Leitch, D. C., Payne, P. R. & Schafer, L. L. Selective C–H activation α to primary amines. Bridging metallaaziridines for catalytic, intramolecular α-alkylation. J. Am. Chem. Soc.131, 2116–2118 (2009). Google Scholar
  403. Chong, E. & Schafer, L. L. 2-Pyridonate titanium complexes for chemoselectivity. accessing intramolecular hydroaminoalkylation over hydroamination. Org. Lett.15, 6002–6005 (2013). Google Scholar
  404. Rosien, M., Töben, I., Schmidtmann, M., Beckhaus, R. & Doye, S. Titanium-catalyzed hydroaminoalkylation of ethylene. Chem. Eur. J.26, 2138–2142 (2020). Google Scholar
  405. Daneshmand, P. et al. Cyclic ureate tantalum catalyst for preferential hydroaminoalkylation with aliphatic amines: mechanistic insights into substrate controlled reactivity. J. Am. Chem. Soc.142, 15740–15750 (2020). Google Scholar
  406. Payne, P. R., Garcia, P., Eisenberger, P., Yim, J. C. H. & Schafer, L. L. Tantalum catalyzed hydroaminoalkylation for the synthesis of α- and β-substituted N-heterocycles. Org. Lett.15, 2182–2185 (2013). Google Scholar
  407. Doerfler, J., Preuss, T., Schischko, A., Schmidtmann, M. & Doye, S. A 2,6-bis(phenylamino)pyridinato titanium catalyst for the highly regioselective hydroaminoalkylation of styrenes and 1,3-butadienes. Angew. Chem. Int. Ed.53, 7918–7922 (2014). Google Scholar
  408. Bielefeld, J., Mannhaupt, S., Schmidtmann, M. & Doye, S. Hydroaminoalkylation of allenes. Synlett30, 967–971 (2019). Google Scholar
  409. Liu, F., Luo, G., Hou, Z. & Luo, Y. Mechanistic insights into scandium-catalyzed hydroaminoalkylation of olefins with amines: origin of regioselectivity and charge-based prediction model. Organometallics36, 1557–1565 (2017). Google Scholar
  410. Reznichenko, A. L. & Hultzsch, K. C. The mechanism of hydroaminoalkylation catalyzed by group 5 metal binaphtholate complexes. J. Am. Chem. Soc.134, 3300–3311 (2012). Google Scholar
  411. Zi, G., Zhang, F. & Song, H. Highly enantioselective hydroaminoalkylation of secondary amines catalyzed by group 5 metal amides with chiral biarylamidate ligands. Chem. Commun.46, 6296–6298 (2010). Google Scholar
  412. Braun, C., Nieger, M., Bräse, S. & Schafer, L. L. Planar-chiral [2.2]paracyclophane-based pyridonates as ligands for tantalum-catalyzed hydroaminoalkylation. ChemCatChem11, 5264–5268 (2019). Google Scholar
  413. Nako, A. E., Oyamada, J., Nishiura, M. & Hou, Z. Scandium-catalysed intermolecular hydroaminoalkylation of olefins with aliphatic tertiary amines. Chem. Sci.7, 6429–6434 (2016). Google Scholar
  414. Su, J., Zhou, Y. & Xu, X. Hydroaminoalkylation of sterically hindered alkenes with N,N-dimethyl anilines using a scandium catalyst. Org. Biomol. Chem.17, 2013–2019 (2019). Google Scholar

Acknowledgements

Generous support by the Deutsche Forschungsgemeinschaft (DFG) (SPP 1807 and Gottfried–Wilhelm–Leibniz prize to L.A.) and the Onassis Foundation (fellowship to N.K.) is gratefully acknowledged. The research leading to these results has received funding from the NMBP‐01–2016 Program of the European Union’s Horizon 2020 Framework Program H2020/2014–2020 under Grant Agreement No. 720996. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie Grant Agreement No. 860762. D.G.M. acknowledges the National Science Foundation (NSF) grant under the CCI Center for Selective C–H Functionalization (CHE-1700982). Z.E.W. and M.A.B. thank the Maurice Wilkins Centre for Molecular Biodiscovery for financial support. J.W.-D. thanks the CNRS (Centre National de la Recherche Scientifique), the Ministere de l’Education Nationale et de la Recherche France and the ANR-DFG programme, grant number Projet ANR-17-CE07-0049-01. This work was supported by a Grant in Aid for Specially Promoted Research by MEXT (No. 17H06091). M.J.J. thanks the Swedish Foundation for Strategic Environmental Research (Mistra; project Mistra SafeChem).

Author information

Authors and Affiliations

  1. Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Göttingen, Germany Torben Rogge, Nikolaos Kaplaneris & Lutz Ackermann
  2. Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, Japan Naoto Chatani
  3. Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon, South Korea Jinwoo Kim & Sukbok Chang
  4. Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea Jinwoo Kim & Sukbok Chang
  5. Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR–National Chemical Laboratory (CSIR–NCL), Pune, India Benudhar Punji
  6. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India Benudhar Punji
  7. Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada Laurel L. Schafer
  8. Cherry L. Emerson Center, Department of Chemistry, Emory University, Atlanta, GA, USA Djamaladdin G. Musaev
  9. Laboratoire d’Innovation Moléculaire et Applications (UMR CNRS7042), Université de Strasbourg/Université de Haute Alsace, ECPM, Strasbourg, France Joanna Wencel-Delord
  10. Department of Chemistry, University of California, Berkeley, CA, USA Charis A. Roberts & Richmond Sarpong
  11. School of Chemical Sciences, University of Auckland, Auckland, New Zealand Zoe E. Wilson & Margaret A. Brimble
  12. School of Biological Sciences, University of Auckland, Auckland, New Zealand Zoe E. Wilson & Margaret A. Brimble
  13. Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand Zoe E. Wilson & Margaret A. Brimble
  14. Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden Magnus J. Johansson
  15. Department of Organic Chemistry, Stockholm University, Stockholm, Sweden Magnus J. Johansson
  1. Torben Rogge